
T-Rex Game using Artificial Intelligence

Gaurav Aidasani, Tanmay Maheshwari, Neha Shah
Team 3

November 25, 2018

1 Introduction and Overview
Games and artificial intelligence have a long history together.
Much research on Artificial Intelligence in games is concerned
with constructing agents for playing games, with or without a
learning component. In this project, we propose to use Deep Q-
learning and online learning Multi Layer Perceptron (MLP) for
learning to control the game agent in T-Rex, the game embedded
in Chrome offline mode. [1]

About The Game: The T-Rex in the game is an infinite
runner, which can jump over cacti, and dodge underneath ob-
stacles. Controls are basic. Space to jump and the down arrow
to duck. The game speeds up with passage of time. The goal
of the game is to survive for as long as possible.

Related work
In 2013, Google Deepmind proposed the use of deep reinforce-
ment learning on training agents to play the 2600 Atari games
[2]. Taking just the pixels and reward received from the game
as inputs, they were able to reach human-expert performance in
multiple Atari games. The main advantage of Deep-Q learning
is that no specification of the game is needed in spite of the
high dimensional image input. The agent is able to learn to play
the game without knowing the underlying game logic. This
framework is model-free and can generalize to a lot of similar
problems.

2 Methods

2.1 Preprocessing for obtaining image features
We aim at extracting pixel-based features from the image. The
features involve the bounding boxes of T-Rex and obstacles,and
the status of the T-Rex (whether the T-Rex is jumping). We used
OpenCV, an open source computer vision tool for pixel-based
feature extraction. These features come from an intuitive under-
standing of how a human agent would play the game: identify
the dinosaur, obstacles, their relative positions, and then decide
the next action for T-Rex.
Background Filtering: The first step in extracting pixel-based
features from the screen shot is to filter out useless pixels in
prediction, such as the horizon and clouds. We also convert the
image into grayscale to reduce the state-space.
Object Detection: After filtering the background, the objects
can be easily identified. We use OpenCV to detect the con-
tours of the objects and find the corresponding bounding boxes.
Each bounding box is represented by the (x,y) co-ordinate of
the upper-left corner as well as the width and height.
Object Classification: Given the bounding boxes, it is impor-
tant to determine the type of each object. In our model, there are

Figure 1: Detection of T-Rex and Cactus

four types of cacti and one dinosaur. The classification of the
object is done by template matching with the help of OpenCV.
Object Tracking: We track objects from frame to frame in or-
der to measure the derivatives of each object on the screen. By
comparing the position of the detected object in two adjacent
frames, we calculate the moving speed for each obstacle.

2.2 Preprocessing for Q-Learning
In Q-Learning model, we apply the standard preprocessing in
Atari games according to [2]. Firstly, we convert the image to
grayscale, and then resize the image to 80x80 grid of pixels.
Finally, we stack the last 4 frames to produce an 80x80x4 input
array for the Deep Q-Learning network.

3 Models

3.1 Baseline
Given the features extracted from the screen, we implement a
baseline imitating the human players, where the T-Rex jumps
whenever the nearest obstacle is close enough (less than 120
pixels). This baseline follows the intuitive greedy player strat-
egy.

3.2 Multi-Layer Perceptron
We built an online learning Multi Layer Perceptron (MLP),
which takes the pixel-based features as input and predicts the
optimized jumping position ahead of the obstacles. The features
of the Multi-Layer Perceptron are as follows: distance between
cactus and T-Rex, height of the obstacles and width of the
obstacles.

Figure 2: MLP Architecture

1



Online learning uses information one record at a time. The
neural network continuously gets a record and updates the
weights until one of the stopping rules is met. If all the records
are used once and none of the stopping rules are met, then the
process continues by recycling the data records.

3.3 Deep Q-learning
Q-Learning: We have used Q-learning, a technique of Re-
inforcement Learning, where we try to approximate a special
function which drives the action-selection policy for any se-
quence of environment states. Q-learning is a model-less im-
plementation of Reinforcement Learning where a table of Q
values is maintained against each state, action taken and the
resulting reward.

Figure 3: CNN Architecture

Training : The agent is trained so that it achieves a score as
high as possible. The agent learns which objects in the image
are harmful (cactus and birds) and which are not (clouds). The
reward function is defined by giving a negative value whenever
the agent dies. The agent is trained with the help of a convolu-
tional neural network.
Initialization:
1. Start with no action and get initial state
2. Observe game-play for specific number of steps
On every iteration:
1. Predict and perform an action
2. Store experience in Replay Memory
3. Choose a batch randomly from Replay Memory and train
model on it
4. Restart if game over

4 Experimental Analyses

Comparison between different models:
In this project, we have noticed the game velocity has a huge
impact on the performance of the models.

When the game is running with constant velocity, all three
models perform better than any human being. However, accel-
eration of the game affects the Baseline and the MLP models.
Due to increase in speed, the Baseline model is unable to jump
at the appropriate time and the T-Rex runs into obstacles.

In the online learning MLP model, the acceleration results in
different data records which affects its entire neural network.

Results
From Fig. 4 and Fig. 5, it is clear that the Q-Learning model
requires a huge amount of training time. After 200 iterations

Figure 4: Learning Curve of MLP

Figure 5: Learning Curve of Q-Learning

the maximum score of the Q-Learning model is 400 whereas
the MLP model shows a high score of approximately 4000.
However, if it was to be continuously trained for one month or
more, it would be unbeatable.

5 Discussion and Future Directions
The models successfully learn to play the T-Rex game from
the pixels and reward, achieving high performance in constant
speed scenarios. However, in game with acceleration, the mod-
els have a hard time capturing velocity change.

For the MLP model, speed could be added as an additional
feature for the neural network. For Q-Learning, specially de-
signed training method can help us overcome the training dif-
ficulties caused by the properties of our game, which further
improves our model’s performance and helps achieve super-
human results.

Generic models can be implemented for similar type games
such as Flappy Birds.

References
[1] Google Chrome Dino game chrome://dino/

[2] Volodymyr M., Koray K., David S., Alex G., Ioannis A.,
DaanW. and Martin R.2013 Playing Atari with Deep Rein-
forcement Learning[online] DeepMind Technologies [cited
19 December 2013]. Available from World Wide Web:
(https://arxiv.org/abs/1312.5602v1).

[3] Reinforcement Learning Explained Q-Learning
https://ai.intel.com/demystifying-deep-reinforcement-
learning/

2


